{ "id": "0804.1682", "version": "v1", "published": "2008-04-10T12:07:03.000Z", "updated": "2008-04-10T12:07:03.000Z", "title": "Non-algebraic Hyperkaehler manifolds", "authors": [ "Frederic Campana", "Keiji Oguiso", "Thomas Peternell" ], "comment": "18 pages", "categories": [ "math.DG", "math.AG" ], "abstract": "We study the algebraic dimension a(X) of a compact hyperkaehler manfold of dimension 2n. We show that a(X) is at most n unless X is projective. If a compact Kaehler manifold with algebraic dimension 0 and Kodaira dimension 0 has a minimal model, then only the values 0,n and 2n are possible. In case of middle dimension, the algebraic reduction is holomorphic Lagrangian. If n = 2, then - without any assumptions - the algebraic dimension only takes the values 0,2 and 4. The paper gives structure results for \"generalised hyperkaehler\" manifolds and studies nef lines bundles.", "revisions": [ { "version": "v1", "updated": "2008-04-10T12:07:03.000Z" } ], "analyses": { "subjects": [ "32J27", "14J99" ], "keywords": [ "non-algebraic hyperkaehler manifolds", "algebraic dimension", "studies nef lines bundles", "compact hyperkaehler manfold", "compact kaehler manifold" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0804.1682C" } } }