{ "id": "0804.1549", "version": "v2", "published": "2008-04-09T20:02:00.000Z", "updated": "2008-11-26T16:07:49.000Z", "title": "Blow up of smooth highly decreasing at infinity solutions to the compressible Navier-Stokes equations", "authors": [ "Olga Rozanova" ], "comment": "14 pages, submitted", "journal": "Journal of Differential Equations Volume 245, Issue 7, 1 October 2008, Pages 1762-1774", "doi": "10.1016/j.jde.2008.07.007", "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "We prove that the smooth solutions to the Cauchy problem for the Navier-Stokes equations with conserved mass, total energy and finite momentum of inertia loses the initial smoothness within a finite time in the case of space of dimension 3 or greater even if the initial data are not compactly supported.", "revisions": [ { "version": "v2", "updated": "2008-11-26T16:07:49.000Z" } ], "analyses": { "subjects": [ "53Q30" ], "keywords": [ "compressible navier-stokes equations", "smooth highly decreasing", "infinity solutions", "smooth solutions", "cauchy problem" ], "tags": [ "journal article" ], "publication": { "journal": "Journal of Differential Equations", "year": 2008, "volume": 245, "number": 7, "pages": 1762 }, "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008JDE...245.1762R" } } }