{ "id": "0804.1213", "version": "v1", "published": "2008-04-08T08:42:22.000Z", "updated": "2008-04-08T08:42:22.000Z", "title": "Quasi-homogeneous linear systems on P2 with base points of multiplicity 7, 8, 9, 10", "authors": [ "Marcin Dumnicki" ], "comment": "13 pages", "categories": [ "math.AG", "math.AC" ], "abstract": "In the paper we prove Harbourne-Hirschowitz conjecture for quasi-homogeneous linear systems on $\\mathbb P^2$ for $m=7$, 8, 9, 10, i.e. systems of curves of given degree passing through points in general position with multiplicities at least $m,...,m,m_0$, where $m=7$, 8, 9, 10, $m_0$ is arbitrary.", "revisions": [ { "version": "v1", "updated": "2008-04-08T08:42:22.000Z" } ], "analyses": { "subjects": [ "14H50", "13P10" ], "keywords": [ "quasi-homogeneous linear systems", "base points", "multiplicity", "harbourne-hirschowitz conjecture", "general position" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0804.1213D" } } }