{ "id": "0804.0046", "version": "v1", "published": "2008-04-01T00:10:25.000Z", "updated": "2008-04-01T00:10:25.000Z", "title": "Trigonometric Cherednik algebra at critical level and quantum many-body problems", "authors": [ "E. Emsiz", "E. M. Opdam", "J. V. Stokman" ], "comment": "31 pages", "journal": "Sel. math., New ser. 14 (2009), 571-605", "doi": "10.1007/s00029-009-0516-y", "categories": [ "math.RT" ], "abstract": "For any module over the affine Weyl group we construct a representation of the associated trigonometric Cherednik algebra $A(k)$ at critical level in terms of Dunkl type operators. Under this representation the center of $A(k)$ produces quantum conserved integrals for root system generalizations of quantum spin-particle systems on the circle with delta function interactions. This enables us to translate the spectral problem of such a quantum spin-particle system to questions in the representation theory of $A(k)$. We use this approach to derive the associated Bethe ansatz equations. They are expressed in terms of the normalized intertwiners of $A(k)$.", "revisions": [ { "version": "v1", "updated": "2008-04-01T00:10:25.000Z" } ], "analyses": { "subjects": [ "20C08", "81R12" ], "keywords": [ "trigonometric cherednik algebra", "quantum many-body problems", "critical level", "quantum spin-particle system", "produces quantum conserved integrals" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0804.0046E" } } }