{ "id": "0803.4418", "version": "v2", "published": "2008-03-31T10:05:26.000Z", "updated": "2008-04-01T12:21:38.000Z", "title": "On the number of graphs not containing $K_{3,3}$ as a minor", "authors": [ "S. Gerke", "O. Gimenez", "M. Noy", "A. Weissl" ], "comment": "17 pages", "categories": [ "math.CO" ], "abstract": "We derive precise asymptotic estimates for the number of labelled graphs not containing $K_{3,3}$ as a minor, and also for those which are edge maximal. Additionally, we establish limit laws for parameters in random $K_{3,3}$-minor-free graphs, like the expected number of edges. To establish these results, we translate a decomposition for the corresponding graph class into equations for generating functions and use singularity analysis. We also find a precise estimate for the number of graphs not containing the graph $K_{3,3}$ plus an edge as a minor.", "revisions": [ { "version": "v2", "updated": "2008-04-01T12:21:38.000Z" } ], "analyses": { "subjects": [ "05C30" ], "keywords": [ "containing", "derive precise asymptotic estimates", "edge maximal", "minor-free graphs", "corresponding graph class" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0803.4418G" } } }