{ "id": "0803.3885", "version": "v1", "published": "2008-03-27T10:46:34.000Z", "updated": "2008-03-27T10:46:34.000Z", "title": "Integral geometry under $G_2$ and $Spin(7)$", "authors": [ "Andreas Bernig" ], "comment": "13 pages", "journal": "Israel J. Math. 184 (2011), 301-316", "categories": [ "math.DG" ], "abstract": "A Hadwiger-type theorem for the exceptional Lie groups $G_2$ and $Spin(7)$ is proved. The algebras of $G_2$ or $Spin(7)$ invariant, translation invariant continuous valuations are both of dimension 10. Geometrically meaningful bases are constructed and the algebra structures are computed. Finally, the kinematic formulas for these groups are determined.", "revisions": [ { "version": "v1", "updated": "2008-03-27T10:46:34.000Z" } ], "analyses": { "subjects": [ "53C65", "52A22" ], "keywords": [ "integral geometry", "exceptional lie groups", "translation invariant continuous valuations", "hadwiger-type theorem", "kinematic formulas" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0803.3885B" } } }