{ "id": "0803.3660", "version": "v1", "published": "2008-03-26T02:56:01.000Z", "updated": "2008-03-26T02:56:01.000Z", "title": "The Equivalence between Uniqueness and Continuous Dependence of Solution for BSDEs with Continuous Coefficient", "authors": [ "Guangyan Jia", "Zhiyong Yu" ], "comment": "6 pages", "categories": [ "math.PR" ], "abstract": "In this paper, we will prove that, if the coefficient $g=g(t,y,z)$ of a BSDE is assumed to be continuous and linear growth in $(y,z)$, then the uniqueness of solution and continuous dependence with respect to $g$ and the terminal value $\\xi$ are equivalent.", "revisions": [ { "version": "v1", "updated": "2008-03-26T02:56:01.000Z" } ], "analyses": { "subjects": [ "60H10", "60H30" ], "keywords": [ "continuous dependence", "continuous coefficient", "uniqueness", "equivalence" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0803.3660J" } } }