{ "id": "0803.3525", "version": "v3", "published": "2008-03-25T11:03:42.000Z", "updated": "2008-04-26T08:16:29.000Z", "title": "On the size of Nikodym sets in finite fields", "authors": [ "Liangpan Li" ], "comment": "4 pages", "categories": [ "math.CA" ], "abstract": "Let $\\mathbb{F}_q$ denote a finite field of $q$ elements. Define a set $B\\subset\\mathbb{F}_q^n$ to be Nikodym if for each $x\\in B^{c}$, there exists a line $L$ such that $L\\cap B^c=\\{x\\}.$ The main purpose of this note is to show that the size of every Nikodym set is at least $C_n\\cdot q^n$, where $C_n$ depends only on $n$.", "revisions": [ { "version": "v3", "updated": "2008-04-26T08:16:29.000Z" } ], "analyses": { "subjects": [ "11T99" ], "keywords": [ "nikodym set", "finite field", "main purpose" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0803.3525L" } } }