{ "id": "0803.3402", "version": "v1", "published": "2008-03-24T13:16:31.000Z", "updated": "2008-03-24T13:16:31.000Z", "title": "Dynamics of tuples of matrices", "authors": [ "George Costakis", "Demetris Hadjiloucas", "Antonios Manoussos" ], "comment": "10 pages", "categories": [ "math.FA" ], "abstract": "In this article we answer a question raised by N. Feldman in \\cite{Feldman} concerning the dynamics of tuples of operators on $\\mathbb{R}^n$. In particular, we prove that for every positive integer $n\\geq 2$ there exist $n$ tuples $(A_1, A_2, ..., A_n)$ of $n\\times n$ matrices over $\\mathbb{R}$ such that $(A_1, A_2, ..., A_n)$ is hypercyclic. We also establish related results for tuples of $2\\times 2$ matrices over $\\mathbb{R}$ or $\\mathbb{C}$ being in Jordan form.", "revisions": [ { "version": "v1", "updated": "2008-03-24T13:16:31.000Z" } ], "analyses": { "subjects": [ "47A16" ], "keywords": [ "jordan form", "hypercyclic", "establish related results", "positive integer" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0803.3402C" } } }