{ "id": "0803.3346", "version": "v3", "published": "2008-03-23T21:15:54.000Z", "updated": "2009-04-17T15:04:30.000Z", "title": "Counting points of homogeneous varieties over finite fields", "authors": [ "Michel Brion", "Emmanuel Peyre" ], "categories": [ "math.AG" ], "abstract": "Let $X$ be an algebraic variety over a finite field $\\bF_q$, homogeneous under a linear algebraic group. We show that the number of rational points of $X$ over $\\bF_{q^n}$ is a periodic polynomial function of $q^n$ with integer coefficients. Moreover, the shifted periodic polynomial function, where $q^n$ is formally replaced with $q^n + 1$, is shown to have non-negative coefficients.", "revisions": [ { "version": "v3", "updated": "2009-04-17T15:04:30.000Z" } ], "analyses": { "subjects": [ "13A50", "14G15", "14L30", "14M17" ], "keywords": [ "finite field", "homogeneous varieties", "counting points", "linear algebraic group", "shifted periodic polynomial function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0803.3346B" } } }