{ "id": "0803.3140", "version": "v1", "published": "2008-03-21T10:41:54.000Z", "updated": "2008-03-21T10:41:54.000Z", "title": "Sharpness of some properties of Wiener amalgam and modulation spaces", "authors": [ "Elena Cordero", "Fabio Nicola" ], "comment": "12 pages", "categories": [ "math.FA", "math.AP" ], "abstract": "We prove sharp estimates for the dilation operator $f(x)\\longmapsto f(\\lambda x)$, when acting on Wiener amalgam spaces $W(L^p,L^q)$. Scaling arguments are also used to prove the sharpness of the known convolution and pointwise relations for modulation spaces $M^{p,q}$, as well as the optimality of an estimate for the Schr\\\"odinger propagator on modulation spaces.", "revisions": [ { "version": "v1", "updated": "2008-03-21T10:41:54.000Z" } ], "analyses": { "subjects": [ "42B35", "46E35" ], "keywords": [ "modulation spaces", "properties", "wiener amalgam spaces", "sharp estimates", "dilation operator" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0803.3140C" } } }