{ "id": "0803.2751", "version": "v2", "published": "2008-03-19T04:14:57.000Z", "updated": "2013-08-26T15:17:10.000Z", "title": "Hyperbolic volume and Heegaard distance", "authors": [ "Tsuyoshi Kobayashi", "Yo'av Rieck" ], "comment": "12pages, 3 figures", "categories": [ "math.GT" ], "abstract": "We prove (Theorem~1.5) that there exists a constant $\\Lambda > 0$ so that if $M$ is a $(\\mu,d)$-generic complete hyperbolic 3-manifold of volume $\\vol[M] < \\infty$ and $\\Sigma \\subset M$ is a Heegaard surface of genus $g(\\Sigma) > \\Lambda \\vol[M]$, then $d(\\Sigma) \\leq 2$, where $d(\\Sigma)$ denotes the distance of $\\Sigma$ as defined by Hempel. The key for the proof of the main result is Theorem~1.8 which is on independent interest. There we prove that if $M$ is a compact 3-manifold that can be triangulated using at most $t$ tetrahedra (possibly with missing or truncated vertices), and $\\Sigma$ is a Heegaard surface for $M$ with $g(\\Sigma) \\geq 76t+26$, then $d(\\Sigma) \\leq 2$.", "revisions": [ { "version": "v2", "updated": "2013-08-26T15:17:10.000Z" } ], "analyses": { "subjects": [ "57M99", "57M25" ], "keywords": [ "heegaard distance", "hyperbolic volume", "heegaard surface", "generic complete hyperbolic", "main result" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0803.2751K" } } }