{ "id": "0803.2126", "version": "v1", "published": "2008-03-14T10:35:23.000Z", "updated": "2008-03-14T10:35:23.000Z", "title": "The signed Eulerian numbers on involutions", "authors": [ "M. Barnabei", "F. Bonetti", "M. Silimbani" ], "comment": "10 pages", "categories": [ "math.CO" ], "abstract": "We define an analogue of signed Eulerian numbers $f_{n,k}$ for involutions of the symmetric group and derive some combinatorial properties of this sequence. In particular, we exhibit both an explicit formula and a recurrence for $f_{n,k}$ arising from the properties of its generating function.", "revisions": [ { "version": "v1", "updated": "2008-03-14T10:35:23.000Z" } ], "analyses": { "subjects": [ "05A05", "05A15", "05A19", "05E10" ], "keywords": [ "signed eulerian numbers", "involutions", "symmetric group", "combinatorial properties", "explicit formula" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0803.2126B" } } }