{ "id": "0803.2112", "version": "v1", "published": "2008-03-14T09:11:23.000Z", "updated": "2008-03-14T09:11:23.000Z", "title": "Combinatorial properties of the numbers of tableaux of bounded height", "authors": [ "M. Barnabei", "F. Bonetti", "M. Silimbani" ], "comment": "11 pages, 1 figure", "categories": [ "math.CO" ], "abstract": "We introduce an infinite family of lower triangular matrices $\\Gamma^{(s)}$, where $\\gamma_{n,i}^s$ counts the standard Young tableaux on $n$ cells and with at most $s$ columns on a suitable subset of shapes. We show that the entries of these matrices satisfy a three-term row recurrence and we deduce recursive and asymptotic properties for the total number $\\tau_s(n)$ of tableaux on $n$ cells and with at most $s$ columns.", "revisions": [ { "version": "v1", "updated": "2008-03-14T09:11:23.000Z" } ], "analyses": { "subjects": [ "05E10", "05A15" ], "keywords": [ "combinatorial properties", "bounded height", "lower triangular matrices", "standard young tableaux", "three-term row recurrence" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0803.2112B" } } }