{ "id": "0803.1244", "version": "v2", "published": "2008-03-08T14:35:43.000Z", "updated": "2008-12-08T11:32:27.000Z", "title": "Moments of Two-Variable Functions and the Uniqueness of Graph Limits", "authors": [ "Christian Borgs", "Jennifer Chayes", "Laszlo Lovasz" ], "comment": "29 pages", "categories": [ "math.CO", "math.CA" ], "abstract": "For a symmetric bounded measurable function W on [0,1]^2, \"moments\" of W can be defined as values t(F,W) indexed by simple graphs. We prove that every such function is determined by its moments up to a measure preserving transformation of the variables. This implies that the limit of a convergent dense graph sequence is unique up to measure preserving transformation.", "revisions": [ { "version": "v2", "updated": "2008-12-08T11:32:27.000Z" } ], "analyses": { "subjects": [ "05C99", "28A99" ], "keywords": [ "graph limits", "two-variable functions", "measure preserving transformation", "uniqueness", "convergent dense graph sequence" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0803.1244B" } } }