{ "id": "0803.1076", "version": "v1", "published": "2008-03-07T12:32:25.000Z", "updated": "2008-03-07T12:32:25.000Z", "title": "Faithful representations of minimal dimension of current Heisenberg Lie algebras", "authors": [ "L. Cagliero", "N. Rojas" ], "comment": "14 pages", "categories": [ "math.RT", "math-ph", "math.MP" ], "abstract": "Given a Lie algebra $\\mathfrak{g}$ over a field of characteristic zero $k$, let $\\mu(\\mathfrak{g})=\\min\\{\\dim \\pi: \\pi\\text{is a faithful representation of}\\mathfrak{g}\\}$. Let $\\mathfrak{h}_{m}$ be the Heisenberg Lie algebra of dimension $2m+1$ over $k$ and let $k[t]$ be the polynomial algebra in one variable. Given $m\\in\\mathbb{N}$ and $p\\in k[t]$, let $\\mathfrak{h}_{m,p}=\\mathfrak{h}_m\\otimes k[t]/(p)$ be the current Lie algebra associated to $\\mathfrak{h}_m$ and $k[t]/(p)$, where $(p)$ is the principal ideal in $k[t]$ generated by $p$. In this paper we prove that $ mu(\\mathfrak{h}_{m,p}) = m \\deg p + \\left \\lceil 2\\sqrt{\\deg p} \\right\\rceil$.", "revisions": [ { "version": "v1", "updated": "2008-03-07T12:32:25.000Z" } ], "analyses": { "subjects": [ "17B10", "17B30" ], "keywords": [ "current heisenberg lie algebras", "minimal dimension", "faithful representations", "polynomial algebra", "characteristic zero" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0803.1076C" } } }