{ "id": "0803.0848", "version": "v1", "published": "2008-03-06T12:35:36.000Z", "updated": "2008-03-06T12:35:36.000Z", "title": "Asymptotic analysis of $k$-noncrossing matchings", "authors": [ "Emma Y. Jin", "Christian M. Reidys", "Rita R. Wang" ], "comment": "19 pages and 1 figure", "categories": [ "math.CO", "math.GM" ], "abstract": "In this paper we study $k$-noncrossing matchings. A $k$-noncrossing matching is a labeled graph with vertex set $\\{1,...,2n\\}$ arranged in increasing order in a horizontal line and vertex-degree 1. The $n$ arcs are drawn in the upper halfplane subject to the condition that there exist no $k$ arcs that mutually intersect. We derive: (a) for arbitrary $k$, an asymptotic approximation of the exponential generating function of $k$-noncrossing matchings $F_k(z)$. (b) the asymptotic formula for the number of $k$-noncrossing matchings $f_{k}(n) \\sim c_k n^{-((k-1)^2+(k-1)/2)} (2(k-1))^{2n}$ for some $c_k>0$.", "revisions": [ { "version": "v1", "updated": "2008-03-06T12:35:36.000Z" } ], "analyses": { "subjects": [ "05A16" ], "keywords": [ "noncrossing matching", "asymptotic analysis", "upper halfplane subject", "asymptotic formula", "vertex set" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0803.0848J" } } }