{ "id": "0803.0353", "version": "v2", "published": "2008-03-03T23:57:28.000Z", "updated": "2009-09-17T03:03:06.000Z", "title": "Cox rings of degree one del Pezzo surfaces", "authors": [ "Damiano Testa", "Anthony Várilly-Alvarado", "Mauricio Velasco" ], "comment": "Significant revision. Proposition 4.4 fixes gap in previous version. To appear in Algebra and Number Theory", "journal": "Algebra and Number Theory 3 (2009) 729-761.", "categories": [ "math.AG", "math.AC" ], "abstract": "Let X be a del Pezzo surface of degree one over an algebraically closed field (of any characteristic), and let Cox(X) be its total coordinate ring. We prove the missing case of a conjecture of Batyrev and Popov, which states that Cox(X) is a quadratic algebra. We use a complex of vector spaces whose homology determines part of the structure of the minimal free Pic(X)-graded resolution of Cox(X) over a polynomial ring. We show that sufficiently many Betti numbers of this minimal free resolution vanish to establish the conjecture.", "revisions": [ { "version": "v2", "updated": "2009-09-17T03:03:06.000Z" } ], "analyses": { "subjects": [ "14J26" ], "keywords": [ "del pezzo surface", "cox rings", "homology determines part", "minimal free pic", "minimal free resolution" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0803.0353T" } } }