{ "id": "0803.0132", "version": "v3", "published": "2008-03-02T17:06:00.000Z", "updated": "2009-01-15T08:26:51.000Z", "title": "On the mean square of the Riemann zeta-function in short intervals", "authors": [ "Aleksandar Ivić" ], "comment": "19 pages", "journal": "Publications de l'Institut Math\\'ematique 85(99), 2009, 1-17", "categories": [ "math.NT" ], "abstract": "It is proved that, for $T^\\epsilon\\le G = G(T) \\le {1\\over2}\\sqrt{T}$, $$ \\int_T^{2T}\\Bigl(I_1(t+G)-I_1(t)\\Bigr)^2 dt = TG\\sum_{j=0}^3a_j\\log^j \\Bigl({\\sqrt{T}\\over G}\\Bigr) + O_\\epsilon(T^{1+\\epsilon}+ T^{1/2+\\epsilon}G^2) $$ with some explicitly computable constants $a_j (a_3>0)$ where, for a fixed natural number $k$, $$I_k(t,G) = {1\\over\\sqrt{\\pi}}\\int_{-\\infty}^\\infty |\\zeta(1/2+it+iu)|^{2k} {\\rm e}^{-(u/G)^2} du. $$ The generalizations to the mean square of $I_1(t+U,G) - I_1(t,G)$ over $[T, T+H]$ and the estimation of the mean square of $I_2(t+U,G)-I_2(t,G)$ are also discussed.", "revisions": [ { "version": "v3", "updated": "2009-01-15T08:26:51.000Z" } ], "analyses": { "subjects": [ "11M06", "11N37" ], "keywords": [ "mean square", "riemann zeta-function", "short intervals", "fixed natural number" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0803.0132I" } } }