{ "id": "0803.0103", "version": "v1", "published": "2008-03-02T06:46:46.000Z", "updated": "2008-03-02T06:46:46.000Z", "title": "Meridian twisting of closed braids and the Homfly polynomial", "authors": [ "Tamás Kálmán" ], "comment": "14 pages", "categories": [ "math.GT" ], "abstract": "Let $\\beta$ be a braid on $n$ strands, with exponent sum $w$. Let $\\Delta$ be the Garside half-twist braid. We prove that the coefficient of $v^{w-n+1}$ in the Homfly polynomial of the closure of $\\beta$ agrees with $(-1)^{n-1}$ times the coefficient of $v^{w+n^2-1}$ in the Homfly polynomial of the closure of $\\beta\\Delta^2$. This coincidence implies that the lower Morton--Franks-Williams estimate for the $v$--degree of the Homfly polynomial of $\\hat\\beta$ is sharp if and only if the upper MFW estimate is sharp for the $v$--degree of the Homfly polynomial of $\\hat{\\beta\\Delta^2}$.", "revisions": [ { "version": "v1", "updated": "2008-03-02T06:46:46.000Z" } ], "analyses": { "subjects": [ "57M25" ], "keywords": [ "homfly polynomial", "closed braids", "meridian twisting", "upper mfw estimate", "garside half-twist braid" ], "tags": [ "journal article" ], "publication": { "doi": "10.1017/S0305004108002016", "journal": "Mathematical Proceedings of the Cambridge Philosophical Society", "year": 2008, "month": "Oct", "volume": 146, "number": 3, "pages": 649 }, "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008MPCPS.146..649K" } } }