{ "id": "0803.0064", "version": "v2", "published": "2008-03-01T13:14:02.000Z", "updated": "2008-06-10T10:25:58.000Z", "title": "Homological properties of Orlik-Solomon algebras", "authors": [ "Gesa Kaempf", "Tim Roemer" ], "comment": "27 pages, minor modifications", "journal": "Manuscr. Math. 129, No. 2, 181-210 (2009)", "categories": [ "math.CO", "math.AC", "math.RA" ], "abstract": "The Orlik-Solomon algebra of a matroid can be considered as a quotient ring over the exterior algebra E. At first we study homological properties of E-modules as e.g. complexity, depth and regularity. In particular, we consider modules with linear injective resolutions. We apply our results to Orlik-Solomon algebras of matroids and give formulas for the complexity, depth and regularity of such rings in terms of invariants of the matroid. Moreover, we characterize those matroids whose Orlik-Solomon ideal has a linear projective resolution and compute in these cases the Betti numbers of the ideal.", "revisions": [ { "version": "v2", "updated": "2008-06-10T10:25:58.000Z" } ], "analyses": { "subjects": [ "05B35", "16E05", "52C35", "13P10", "16W50" ], "keywords": [ "orlik-solomon algebra", "study homological properties", "complexity", "betti numbers", "regularity" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0803.0064K" } } }