{ "id": "0802.4436", "version": "v2", "published": "2008-02-29T17:31:24.000Z", "updated": "2008-03-28T03:42:59.000Z", "title": "Krasinkiewicz spaces and parametric Krasinkiewicz maps", "authors": [ "Eiichi Matsuhashi", "Vesko Valov" ], "comment": "14 pages", "categories": [ "math.GN", "math.GT" ], "abstract": "We say that a metrizable space $M$ is a Krasinkiewicz space if any map from a metrizable compactum $X$ into $M$ can be approximated by Krasinkiewicz maps (a map $g\\colon X\\to M$ is Krasinkiewicz provided every continuum in $X$ is either contained in a fiber of $g$ or contains a component of a fiber of $g$). In this paper we establish the following property of Krasinkiewicz spaces: Let $f\\colon X\\to Y$ be a perfect map between metrizable spaces and $M$ a Krasinkiewicz complete $ANR$-space. If $Y$ is a countable union of closed finite-dimensional subsets, then the function space $C(X,M)$ with the source limitation topology contains a dense $G_{\\delta}$-subset of maps $g$ such that all restrictions $g|f^{-1}(y)$, $y\\in Y$, are Krasinkiewicz maps. The same conclusion remains true if $M$ is homeomorphic to a closed convex subset of a Banach space and $X$ is a $C$-space.", "revisions": [ { "version": "v2", "updated": "2008-03-28T03:42:59.000Z" } ], "analyses": { "subjects": [ "54F15", "54F45", "54E40" ], "keywords": [ "parametric krasinkiewicz maps", "krasinkiewicz space", "source limitation topology contains", "metrizable space", "conclusion remains true" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0802.4436M" } } }