{ "id": "0802.4352", "version": "v1", "published": "2008-02-29T10:07:34.000Z", "updated": "2008-02-29T10:07:34.000Z", "title": "Klein-Gordon-Maxwell System in a bounded domain", "authors": [ "Pietro d'Avenia", "Lorenzo Pisani", "Gaetano Siciliano" ], "comment": "17 pages", "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "This paper is concerned with the Klein-Gordon-Maxwell system in a bounded spatial domain. We discuss the existence of standing waves $\\psi=u(x)e^{-i\\omega t}$ in equilibrium with a purely electrostatic field $\\mathbf{E}=-\\nabla\\phi(x)$. We assume an homogeneous Dirichlet boundary condition on $u$ and an inhomogeneous Neumann boundary condition on $\\phi$. In the \"linear\" case we characterize the existence of nontrivial solutions for small boundary data. With a suitable nonlinear perturbation in the matter equation, we get the existence of infinitely many solutions.", "revisions": [ { "version": "v1", "updated": "2008-02-29T10:07:34.000Z" } ], "analyses": { "subjects": [ "35J50", "35J55", "35Q60" ], "keywords": [ "klein-gordon-maxwell system", "bounded domain", "small boundary data", "inhomogeneous neumann boundary condition", "homogeneous dirichlet boundary condition" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0802.4352D" } } }