{ "id": "0802.3487", "version": "v2", "published": "2008-02-24T03:59:15.000Z", "updated": "2008-05-23T21:52:36.000Z", "title": "Reconstruction of Random Colourings", "authors": [ "Allan Sly" ], "comment": "Added references, updated notation", "doi": "10.1007/s00220-009-0783-7", "categories": [ "math.PR" ], "abstract": "Reconstruction problems have been studied in a number of contexts including biology, information theory and and statistical physics. We consider the reconstruction problem for random $k$-colourings on the $\\Delta$-ary tree for large $k$. Bhatnagar et. al. showed non-reconstruction when $\\Delta \\leq \\frac12 k\\log k - o(k\\log k)$ and reconstruction when $\\Delta \\geq k\\log k + o(k\\log k)$. We tighten this result and show non-reconstruction when $\\Delta \\leq k[\\log k + \\log \\log k + 1 - \\ln 2 -o(1)]$ and reconstruction when $\\Delta \\geq k[\\log k + \\log \\log k + 1+o(1)]$.", "revisions": [ { "version": "v2", "updated": "2008-05-23T21:52:36.000Z" } ], "analyses": { "subjects": [ "82B26", "60K35" ], "keywords": [ "random colourings", "reconstruction problem", "information theory", "ary tree", "statistical physics" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer", "journal": "Communications in Mathematical Physics", "year": 2009, "month": "Jun", "volume": 288, "number": 3, "pages": 943 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009CMaPh.288..943S" } } }