{ "id": "0802.3129", "version": "v1", "published": "2008-02-21T15:12:28.000Z", "updated": "2008-02-21T15:12:28.000Z", "title": "An explicit finite difference scheme for the Camassa-Holm equation", "authors": [ "Giuseppe Maria Coclite", "Kenneth H. Karlsen", "Nils Henrik Risebro" ], "comment": "45 pages, 6 figures", "categories": [ "math.AP", "math.NA" ], "abstract": "We put forward and analyze an explicit finite difference scheme for the Camassa-Holm shallow water equation that can handle general $H^1$ initial data and thus peakon-antipeakon interactions. Assuming a specified condition restricting the time step in terms of the spatial discretization parameter, we prove that the difference scheme converges strongly in $H^1$ towards a dissipative weak solution of Camassa-Holm equation.", "revisions": [ { "version": "v1", "updated": "2008-02-21T15:12:28.000Z" } ], "analyses": { "subjects": [ "35G25", "35L05", "65M06", "65M12" ], "keywords": [ "explicit finite difference scheme", "camassa-holm equation", "camassa-holm shallow water equation", "spatial discretization parameter", "difference scheme converges" ], "note": { "typesetting": "TeX", "pages": 45, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0802.3129C" } } }