{ "id": "0802.3128", "version": "v1", "published": "2008-02-21T15:10:44.000Z", "updated": "2008-02-21T15:10:44.000Z", "title": "$L^p$ Boundedness of Commutators of Riesz Transforms associated to Schrödinger Operator", "authors": [ "Zihua Guo", "Pengtao Li", "Lizhong Peng" ], "comment": "14 pages, 0 figures", "journal": "J. Math. Anal. Appl. 341 (2008) 421-432", "categories": [ "math.CA" ], "abstract": "In this paper we consider $L^p$ boundedness of some commutators of Riesz transforms associated to Schr\\\"{o}dinger operator $P=-\\Delta+V(x)$ on $\\mathbb{R}^n, n\\geq 3$. We assume that $V(x)$ is non-zero, nonnegative, and belongs to $B_q$ for some $q \\geq n/2$. Let $T_1=(-\\Delta+V)^{-1}V,\\ T_2=(-\\Delta+V)^{-1/2}V^{1/2}$ and $T_3=(-\\Delta+V)^{-1/2}\\nabla$. We obtain that $[b,T_j] (j=1,2,3)$ are bounded operators on $L^p(\\mathbb{R}^n)$ when $p$ ranges in a interval, where $b \\in \\mathbf{BMO}(\\mathbb{R}^n)$. Note that the kernel of $T_j (j=1,2,3)$ has no smoothness.", "revisions": [ { "version": "v1", "updated": "2008-02-21T15:10:44.000Z" } ], "analyses": { "subjects": [ "47B38", "42B25", "35Q40" ], "keywords": [ "riesz transforms", "schrödinger operator", "boundedness", "commutators", "smoothness" ], "tags": [ "journal article" ], "publication": { "doi": "10.1016/j.jmaa.2007.05.024", "journal": "Journal of Mathematical Analysis and Applications", "year": 2008, "month": "May", "volume": 341, "number": 1, "pages": 421 }, "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008JMAA..341..421G" } } }