{ "id": "0802.2937", "version": "v3", "published": "2008-02-20T20:35:06.000Z", "updated": "2011-05-10T16:40:46.000Z", "title": "Twisted conjugacy classes for polyfree groups", "authors": [ "Alexander Fel'shtyn", "Daciberg Gonçalves", "Peter Wong" ], "comment": "11 pages", "categories": [ "math.GR", "math.GT" ], "abstract": "Let $G$ be a finitely generated polyfree group. If $G$ has nonzero Euler characteristic then we show that $Aut(G)$ has a finite index subgroup in which every automorphism has infinite Reidemeister number. For certain $G$ of length 2, we show that the number of Reidemeister classes of every automorphism is infinite.", "revisions": [ { "version": "v3", "updated": "2011-05-10T16:40:46.000Z" } ], "analyses": { "subjects": [ "20E45", "55M20" ], "keywords": [ "twisted conjugacy classes", "nonzero euler characteristic", "infinite reidemeister number", "finite index subgroup", "finitely generated polyfree group" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0802.2937F" } } }