{ "id": "0802.2743", "version": "v2", "published": "2008-02-20T02:57:14.000Z", "updated": "2009-02-25T23:29:34.000Z", "title": "Ellipticity and Ergodicity", "authors": [ "Derek W. Robinson", "Adam Sikora" ], "comment": "8 pages--Replacement, with corrections, of an earlier version", "categories": [ "math.AP" ], "abstract": "Let $S=\\{S_t\\}_{t\\geq0}$ be the submarkovian semigroup on $L_2(\\Ri^d)$ generated by a self-adjoint, second-order, divergence-form, elliptic operator $H$ with Lipschitz continuous coefficients $c_{ij}$. Further let $\\Omega$ be an open subset of $\\Ri^d$. Under the assumption that $C_c^\\infty(\\Ri^d)$ is a core for $H$ we prove that $S$ leaves $L_2(\\Omega)$ invariant if, and only if, it is invariant under the flows generated by the vector fields $Y_i=\\sum^d_{j=1}c_{ij}\\partial_j$.", "revisions": [ { "version": "v2", "updated": "2009-02-25T23:29:34.000Z" } ], "analyses": { "subjects": [ "35J70", "35Hxx", "35F05", "31C15" ], "keywords": [ "ellipticity", "ergodicity", "submarkovian semigroup", "elliptic operator", "lipschitz continuous coefficients" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0802.2743R" } } }