{ "id": "0802.2491", "version": "v2", "published": "2008-02-18T14:18:13.000Z", "updated": "2008-02-28T13:30:40.000Z", "title": "Ballot theorems for random walks with finite variance", "authors": [ "L. Addario-Berry", "B. A. Reed" ], "comment": "21 pages; substantially simplified the proof of the positive result", "categories": [ "math.PR" ], "abstract": "We prove an analogue of the classical ballot theorem that holds for any random walk in the range of attraction of the normal distribution. Our result is best possible: we exhibit examples demonstrating that if any of our hypotheses are removed, our conclusions may no longer hold.", "revisions": [ { "version": "v2", "updated": "2008-02-28T13:30:40.000Z" } ], "analyses": { "keywords": [ "random walk", "finite variance", "longer hold", "normal distribution", "classical ballot theorem" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0802.2491A" } } }