{ "id": "0802.2314", "version": "v2", "published": "2008-02-16T05:28:14.000Z", "updated": "2009-02-12T10:59:31.000Z", "title": "Injectivity on the set of conjugacy classes of some monomorphisms between Artin groups", "authors": [ "Eon-Kyung Lee", "Sang-Jin Lee" ], "comment": "27 pages, 16 figures, published version", "journal": "Journal of Algebra, vol. 323, no. 7, pp. 1879-1907, 2010", "doi": "10.1016/j.jalgebra.2008.12.013", "categories": [ "math.GT", "math.GR" ], "abstract": "There are well-known monomorphisms between the Artin groups of finite type $\\arA_n$, $\\arB_n=\\arC_n$ and affine type $\\tilde \\arA_{n-1}$, $\\tilde\\arC_{n-1}$. The Artin group $A(\\arA_n)$ is isomorphic to the $(n+1)$-strand braid group $B_{n+1}$, and the other three Artin groups are isomorphic to some subgroups of $B_{n+1}$. The inclusions between these subgroups yield monomorphisms $A(\\arB_n)\\to A(\\arA_n)$, $A(\\tilde \\arA_{n-1})\\to A(\\arB_n)$ and $A(\\tilde \\arC_{n-1})\\to A(\\arB_n)$. There are another type of monomorphisms $A(\\arB_d)\\to A(\\arA_{md-1})$, $A(\\arB_d)\\to A(\\arB_{md})$ and $A(\\arB_d)\\to A(\\arA_{md})$ which are induced by isomorphisms between Artin groups of type $\\arB$ and centralizers of periodic braids. In this paper, we show that the monomorphisms $A(\\arB_d)\\to A(\\arA_{md-1})$, $A(\\arB_d)\\to A(\\arB_{md})$ and $A(\\arB_d)\\to A(\\arA_{md})$ induce injective functions on the set of conjugacy classes, and that none of the monomorphisms $A(\\arB_n)\\to A(\\arA_n)$, $A(\\tilde \\arA_{n-1})\\to A(\\arB_n)$ and $A(\\tilde \\arC_{n-1})\\to A(\\arB_n)$ does so.", "revisions": [ { "version": "v2", "updated": "2009-02-12T10:59:31.000Z" } ], "analyses": { "subjects": [ "20F36", "20F10" ], "keywords": [ "artin group", "conjugacy classes", "injectivity", "strand braid group", "subgroups yield monomorphisms" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0802.2314L" } } }