{ "id": "0802.1987", "version": "v2", "published": "2008-02-14T09:24:42.000Z", "updated": "2008-03-31T09:01:09.000Z", "title": "Dispersive estimates for the Schrodinger equation in dimensions four and five", "authors": [ "Fernando Cardoso", "Claudio Cuevas", "Georgi Vodev" ], "comment": "17 pages", "categories": [ "math.AP" ], "abstract": "We prove optimal (that is, without loss of derivatives) dispersive estimates for the Schrodinger group $e^{it(-\\Delta+V)}$ for a class of real-valued potentials $V\\in C^k(R^n)$ with $k>(n-3)/2$, where $n=4,5$.", "revisions": [ { "version": "v2", "updated": "2008-03-31T09:01:09.000Z" } ], "analyses": { "keywords": [ "dispersive estimates", "schrodinger equation", "dimensions" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0802.1987C" } } }