{ "id": "0802.1260", "version": "v1", "published": "2008-02-11T09:16:07.000Z", "updated": "2008-02-11T09:16:07.000Z", "title": "A characterization of the overcoherence", "authors": [ "Daniel Caro" ], "comment": "10 pages", "categories": [ "math.AG" ], "abstract": "Let $\\mathcal{P}$ be a proper smooth formal $\\mathcal{V}$-scheme, $X$ a closed subscheme of the special fiber of $\\mathcal{P}$, $\\mathcal{E} \\in F\\text{-}D ^\\mathrm{b}_\\mathrm{coh} (\\D ^\\dag_{\\mathcal{P},\\mathbb{Q}})$ with support in $X$. We check that $\\mathcal{E}$ is $\\D ^\\dag _{\\mathcal{P},\\mathbb{Q}}$-overcoherent if and only if, for any morphism $f : \\mathcal{P}' \\to \\mathcal{P}$ of smooth formal $\\mathcal{V}$-schemes, $f ^! (\\mathcal{E}) $ is $\\D ^\\dag_{\\mathcal{P}', \\mathbb{Q}}$-coherent.", "revisions": [ { "version": "v1", "updated": "2008-02-11T09:16:07.000Z" } ], "analyses": { "subjects": [ "14F30" ], "keywords": [ "characterization", "overcoherence", "proper smooth formal", "special fiber" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0802.1260C" } } }