{ "id": "0802.1152", "version": "v4", "published": "2008-02-08T13:38:51.000Z", "updated": "2009-12-09T10:46:33.000Z", "title": "Hiding a drift", "authors": [ "Miklós Rásonyi", "Walter Schachermayer", "Richard Warnung" ], "comment": "Published in at http://dx.doi.org/10.1214/09-AOP469 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org)", "journal": "Annals of Probability 2009, Vol. 37, No. 6, 2459-2479", "doi": "10.1214/09-AOP469", "categories": [ "math.PR" ], "abstract": "In this article we consider a Brownian motion with drift of the form \\[dS_t=\\mu_t dt+dB_t\\qquadfor t\\ge0,\\] with a specific nontrivial $(\\mu_t)_{t\\geq0}$, predictable with respect to $\\mathbb{F}^B$, the natural filtration of the Brownian motion $B=(B_t)_{t\\ge0}$. We construct a process $H=(H_t)_{t\\ge0}$, also predictable with respect to $\\mathbb{F}^B$, such that $((H\\cdot S)_t)_{t\\ge 0}$ is a Brownian motion in its own filtration. Furthermore, for any $\\delta>0$, we refine this construction such that the drift $(\\mu_t)_{t\\ge0}$ only takes values in $]\\mu-\\delta,\\mu+\\delta[$, for fixed $\\mu>0$.", "revisions": [ { "version": "v4", "updated": "2009-12-09T10:46:33.000Z" } ], "analyses": { "subjects": [ "60H05", "60G44", "60G05", "60H10" ], "keywords": [ "brownian motion", "specific nontrivial", "natural filtration", "construction" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0802.1152R" } } }