{ "id": "0802.0572", "version": "v2", "published": "2008-02-05T10:18:10.000Z", "updated": "2008-05-02T07:26:38.000Z", "title": "On the number of collinear triples in permutations", "authors": [ "Liangpan Li" ], "comment": "4 pages", "categories": [ "math.CO" ], "abstract": "Let $\\alpha:\\mathbb{Z}_n\\to\\mathbb{Z}_n$ be a permutation and $\\Psi(\\alpha)$ be the number of collinear triples modulo $n$ in the graph of $\\alpha$. Cooper and Solymosi had given by induction the bound $\\min_{\\alpha}\\Psi(\\alpha)\\geq\\lceil(n-1)/4\\rceil$ when $n$ is a prime number. The main purpose of this paper is to give a direct proof of that bound. Besides, the expected number of collinear triples a permutation can have is also been determined.", "revisions": [ { "version": "v2", "updated": "2008-05-02T07:26:38.000Z" } ], "analyses": { "subjects": [ "51E15", "11T99" ], "keywords": [ "permutation", "collinear triples modulo", "direct proof", "prime number", "main purpose" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0802.0572L" } } }