{ "id": "0801.4590", "version": "v1", "published": "2008-01-30T01:39:02.000Z", "updated": "2008-01-30T01:39:02.000Z", "title": "Counting lattice points in the moduli space of curves", "authors": [ "Paul Norbury" ], "comment": "15 pages, 5figures", "categories": [ "math.AG", "math.GT" ], "abstract": "We show how to define and count lattice points in the moduli space $\\modm_{g,n}$ of genus g curves with n labeled points. This produces a polynomial with coefficients that include the Euler characteristic of the moduli space, and tautological intersection numbers on the compactified moduli space.", "revisions": [ { "version": "v1", "updated": "2008-01-30T01:39:02.000Z" } ], "analyses": { "subjects": [ "32G15", "11P21", "57R20" ], "keywords": [ "counting lattice points", "count lattice points", "tautological intersection numbers", "compactified moduli space", "euler characteristic" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0801.4590N" } } }