{ "id": "0801.4218", "version": "v1", "published": "2008-01-28T09:26:53.000Z", "updated": "2008-01-28T09:26:53.000Z", "title": "Johnson's homomorphisms and the Arakelov-Green function", "authors": [ "Nariya Kawazumi" ], "categories": [ "math.GT", "math.AG" ], "abstract": "Let $\\pi: {\\mathbb C}_g \\to {\\mathbb M}_g$ be the universal family of compact Riemann surfaces of genus $g \\geq 1$. We introduce a real-valued function on the moduli space ${\\mathbb M}_g$ and compute the first and the second variations of the function. As a consequence we relate the Chern form of the relative tangent bundle $T_{{\\mathbb C}_g/{\\mathbb M}_g}$ induced by the Arakelov-Green function with differential forms on ${\\mathbb C}_g$ induced by a flat connection whose holonomy gives Johnson's homomorphisms on the mapping class group.", "revisions": [ { "version": "v1", "updated": "2008-01-28T09:26:53.000Z" } ], "analyses": { "subjects": [ "57R20", "14H15", "32G15" ], "keywords": [ "arakelov-green function", "johnsons homomorphisms", "compact riemann surfaces", "moduli space", "relative tangent bundle" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0801.4218K" } } }