{ "id": "0801.3854", "version": "v3", "published": "2008-01-24T23:01:38.000Z", "updated": "2011-01-24T13:11:41.000Z", "title": "Long cycles in fullerene graphs", "authors": [ "D. Král'", "O. Pangrác", "J. -S. Sereni", "R. Skrekovski" ], "comment": "12 pages, 10 figures", "journal": "Journal of Mathematical Chemistry, 45(4):1021--1031, 2009", "doi": "10.1007/s10910-008-9390-7", "categories": [ "math.CO" ], "abstract": "It is conjectured that every fullerene graph is hamiltonian. Jendrol' and Owens proved [J. Math. Chem. 18 (1995), pp. 83--90] that every fullerene graph on n vertices has a cycle of length at least 4n/5. In this paper, we improve this bound to 5n/6-2/3.", "revisions": [ { "version": "v3", "updated": "2011-01-24T13:11:41.000Z" } ], "analyses": { "subjects": [ "05C38", "92E10" ], "keywords": [ "fullerene graph", "long cycles", "hamiltonian" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }