{ "id": "0801.3741", "version": "v2", "published": "2008-01-24T13:48:52.000Z", "updated": "2016-02-15T12:02:11.000Z", "title": "Rectifiability of sets of finite perimeter in Carnot groups: existence of a tangent hyperplane", "authors": [ "Luigi Ambrosio", "Bruce Kleiner", "Enrico Le Donne" ], "comment": "29 pages, final version", "journal": "J. Geom. Anal. 19 (2009), no. 3, 509-540", "categories": [ "math.AP", "math.DG", "math.GR", "math.MG" ], "abstract": "We consider sets of locally finite perimeter in Carnot groups. We show that if E is a set of locally finite perimeter in a Carnot group G, then for almost every x in G with respect to the perimeter measure of E, some tangent of E at x is a vertical halfspace. This is a partial extension of a theorem of Franchi-Serapioni-Serra Cassano in step 2 Carnot groups: they have shown that, for almost every x, E has a unique tangent at x, and this tangent is a vertical halfspace.", "revisions": [ { "version": "v1", "updated": "2008-01-24T13:48:52.000Z", "comment": null, "journal": null, "doi": null }, { "version": "v2", "updated": "2016-02-15T12:02:11.000Z" } ], "analyses": { "subjects": [ "28A75", "49Q15", "58C35" ], "keywords": [ "carnot group", "tangent hyperplane", "locally finite perimeter", "rectifiability", "vertical halfspace" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable" } } }