{ "id": "0801.3568", "version": "v2", "published": "2008-01-23T15:28:20.000Z", "updated": "2010-12-10T11:30:24.000Z", "title": "Uniqueness of Invariant Lagrangian Graphs in a Homology or a Cohomology Class", "authors": [ "Albert Fathi", "Alessandro Giuliani", "Alfonso Sorrentino" ], "comment": "20 pages. Version published on Ann. Sc. Norm. Super. Pisa Cl. Sci.(5) Vol. 8, no. 4, 659-680, 2009", "journal": "Ann. Sc. Norm. Super. Pisa Cl. Sci.(5) Vol. 78 (2009), no. 4, 659-680", "categories": [ "math.DS", "math-ph", "math.MP", "math.SG" ], "abstract": "Given a smooth compact Riemannian manifold $M$ and a Hamiltonian $H$ on the cotangent space $T^*M$, strictly convex and superlinear in the momentum variables, we prove uniqueness of certain ergodic invariant Lagrangian graphs within a given homology or cohomology class. In particular, in the context of quasi-integrable Hamiltonian systems, our result implies global uniqueness of Lagrangian KAM tori with rotation vector $\\rho$. This result extends generically to the $C^0$-closure of KAM tori.", "revisions": [ { "version": "v2", "updated": "2010-12-10T11:30:24.000Z" } ], "analyses": { "subjects": [ "37J50", "37J40" ], "keywords": [ "cohomology class", "ergodic invariant lagrangian graphs", "smooth compact riemannian manifold", "result implies global uniqueness", "lagrangian kam tori" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0801.3568F" } } }