{ "id": "0801.3314", "version": "v1", "published": "2008-01-22T07:09:18.000Z", "updated": "2008-01-22T07:09:18.000Z", "title": "Occupation densities for certain processes related to fractional Brownian motion", "authors": [ "Khalifa Es-Sebaiy", "David Nualart", "Youssef Ouknine", "Ciprian Tudor" ], "categories": [ "math.PR" ], "abstract": "In this paper we establish the existence of a square integrable occupation density for two classes of stochastic processes. First we consider a Gaussian process with an absolutely continuous random drift, and secondly we handle the case of a (Skorohod) integral with respect to the fractional Brownian motion with Hurst parameter $H>\\frac 12$. The proof of these results uses a general criterion for the existence of a square integrable local time, which is based on the techniques of Malliavin calculus.", "revisions": [ { "version": "v1", "updated": "2008-01-22T07:09:18.000Z" } ], "analyses": { "keywords": [ "fractional brownian motion", "square integrable occupation density", "square integrable local time", "stochastic processes" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0801.3314E" } } }