{ "id": "0801.3074", "version": "v2", "published": "2008-01-20T10:03:44.000Z", "updated": "2008-04-02T11:58:38.000Z", "title": "Irregular and singular loci of commuting varieties", "authors": [ "Vladimir L. Popov" ], "comment": "15 pages Several minor corrections are implemented", "journal": "Transformation Groups, Vol. 13 (2008), Nos. 3--4, 819--837.", "categories": [ "math.AG", "math.GR", "math.RT" ], "abstract": "We prove that the singular locus of the commuting variety of a noncommutative reductive Lie algebra is contained in the irregular locus and we compute the codimension of the latter. We prove that one of the irreducible components of the irregular locus has codimension 4. This yields the lower bound of the codimension of the singular locus, in particular, implies that it is at least 2. We also prove that the commuting variety is rational.", "revisions": [ { "version": "v2", "updated": "2008-04-02T11:58:38.000Z" } ], "analyses": { "subjects": [ "14M99", "14L30", "14R20", "14L24", "17B45" ], "keywords": [ "singular locus", "commuting variety", "irregular locus", "codimension", "lower bound" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }