{ "id": "0801.2755", "version": "v1", "published": "2008-01-17T19:45:49.000Z", "updated": "2008-01-17T19:45:49.000Z", "title": "$L^\\infty$-Uniqueness of Generalized SCHRÖdinger Operators", "authors": [ "Ludovic Dan Lemle" ], "categories": [ "math-ph", "math.MP" ], "abstract": "The main purpose of this paper is to show that the generalized Schr\\\"odinger operator ${\\cal A}^Vf={1/2}\\Delta f+b\\nabla f-Vf$, $f\\in C_0^\\infty(\\R^d)$, is a pre-generator for which we can prove its $L^\\infty(\\R^d,dx)$-uniqueness. Moreover, we prove the $L^1(\\R^d,dx)$-uniqueness of weak solutions for the Fokker-Planck equation associated with this pre-generator.", "revisions": [ { "version": "v1", "updated": "2008-01-17T19:45:49.000Z" } ], "analyses": { "subjects": [ "47D03", "47F05", "60J60" ], "keywords": [ "generalized schrödinger operators", "uniqueness", "pre-generator", "weak solutions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0801.2755L" } } }