{ "id": "0801.2751", "version": "v3", "published": "2008-01-17T19:27:53.000Z", "updated": "2010-11-24T06:34:07.000Z", "title": "Construction of an Edwards' probability measure on $\\mathcal{C}(\\mathbb{R}_+,\\mathbb{R})$", "authors": [ "Joseph Najnudel" ], "comment": "Published in at http://dx.doi.org/10.1214/10-AOP540 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org)", "journal": "Annals of Probability 2010, Vol. 38, No. 6, 2295-2321", "doi": "10.1214/10-AOP540", "categories": [ "math.PR" ], "abstract": "In this article, we prove that the measures $\\mathbb{Q}_T$ associated to the one-dimensional Edwards' model on the interval $[0,T]$ converge to a limit measure $\\mathbb{Q}$ when $T$ goes to infinity, in the following sense: for all $s\\geq0$ and for all events $\\Lambda_s$ depending on the canonical process only up to time $s$, $\\mathbb{Q}_T(\\Lambda_s)\\rightarrow\\mathbb{Q}(\\Lambda_s)$. Moreover, we prove that, if $\\mathbb{P}$ is Wiener measure, there exists a martingale $(D_s)_{s\\in\\mathbb{R}_+}$ such that $\\mathbb{Q}(\\Lambda_s) =\\mathbb{E}_{\\mathbb{P}}(\\mathbh{1}_{\\Lambda_s}D_s)$, and we give an explicit expression for this martingale.", "revisions": [ { "version": "v3", "updated": "2010-11-24T06:34:07.000Z" } ], "analyses": { "keywords": [ "probability measure", "construction", "limit measure", "wiener measure", "martingale" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0801.2751N" } } }