{ "id": "0801.2726", "version": "v2", "published": "2008-01-17T19:50:05.000Z", "updated": "2008-12-04T09:48:02.000Z", "title": "Schatten p-norm inequalities related to a characterization of inner product spaces", "authors": [ "O. Hirzallah", "F. Kittaneh", "M. S. Moslehian" ], "comment": "Minor revision, to appear in Math. Inequal. Appl. (MIA)", "journal": "Math. Inequal. Appl. 13 (2010), no. 2, 235-241", "categories": [ "math.FA", "math.OA" ], "abstract": "Let $A_1, ... A_n$ be operators acting on a separable complex Hilbert space such that $\\sum_{i=1}^n A_i=0$. It is shown that if $A_1, ... A_n$ belong to a Schatten $p$-class, for some $p>0$, then 2^{p/2}n^{p-1} \\sum_{i=1}^n \\|A_i\\|^p_p \\leq \\sum_{i,j=1}^n\\|A_i\\pm A_j\\|^p_p for $0