{ "id": "0801.2723", "version": "v1", "published": "2008-01-17T17:19:15.000Z", "updated": "2008-01-17T17:19:15.000Z", "title": "On the Tensor Products of Modules for Dihedral 2-Groups", "authors": [ "David A. Craven" ], "comment": "11 pages", "categories": [ "math.RT" ], "abstract": "Recall that an algebraic module is a KG-module that satisfies a polynomial with integer coefficients, with addition and multiplication given by direct sum and tensor product. In this article we prove that if L is a component of the (stable) Auslander-Reiten quiver for a dihedral 2-group consisting of non-periodic modules, then there is at most one algebraic module on L.", "revisions": [ { "version": "v1", "updated": "2008-01-17T17:19:15.000Z" } ], "analyses": { "subjects": [ "20C20" ], "keywords": [ "tensor product", "algebraic module", "non-periodic modules", "direct sum", "auslander-reiten quiver" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }