{ "id": "0801.2216", "version": "v2", "published": "2008-01-15T05:45:47.000Z", "updated": "2008-08-25T06:52:10.000Z", "title": "Knots in Riemannian manifolds", "authors": [ "Fuquan Fang", "S. Mendonca" ], "comment": "9 pages", "categories": [ "math.DG", "math.AG" ], "abstract": "In this paper we study submanifold with nonpositive extrinsic curvature in a positively curved manifold. Among other things we prove that, if $K\\subset (S^n, g)$ is a totally geodesic submanifold in a Riemannian sphere with positive sectional curvature where $n\\ge 5$, then $K$ is homeomorphic to $S^{n-2}$ and the fundamental group of the knot complement $\\pi_1(S^n-K)\\cong \\Bbb Z$.", "revisions": [ { "version": "v2", "updated": "2008-08-25T06:52:10.000Z" } ], "analyses": { "keywords": [ "riemannian manifolds", "study submanifold", "fundamental group", "nonpositive extrinsic curvature", "positive sectional curvature" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0801.2216F" } } }