{ "id": "0801.1221", "version": "v1", "published": "2008-01-08T12:49:33.000Z", "updated": "2008-01-08T12:49:33.000Z", "title": "On the singularity of random matrices with independent entries", "authors": [ "Laurent Bruneau", "Francois Germinet" ], "comment": "to be published in the Proc. Amer. Math. Soc", "categories": [ "math.PR" ], "abstract": "We consider n by n real matrices whose entries are non-degenerate random variables that are independent but non necessarily identically distributed, and show that the probability that such a matrix is singular is O(1/sqrt{n}). The purpose of this note is to provide a short and elementary proof of this fact using a Bernoulli decomposition of arbitrary non degenerate random variables.", "revisions": [ { "version": "v1", "updated": "2008-01-08T12:49:33.000Z" } ], "analyses": { "subjects": [ "15A52", "60C05" ], "keywords": [ "random matrices", "independent entries", "arbitrary non degenerate random variables", "singularity", "non-degenerate random variables" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }