{ "id": "0801.0829", "version": "v1", "published": "2008-01-05T23:59:07.000Z", "updated": "2008-01-05T23:59:07.000Z", "title": "Rigidity of Conformally Compact Manifolds with the Round Sphere as the Conformal Infinity", "authors": [ "Satyaki Dutta" ], "comment": "23 pages", "categories": [ "math.DG" ], "abstract": "In this paper we prove that under a lower bound on the Ricci curvature and an asymptotic assumption on the scalar curvature, a complete conformally compact manifold $(M^{n+1},g)$, with a pole $p$ and with the conformal infinity in the conformal class of the round sphere, has to be the hyperbolic space.", "revisions": [ { "version": "v1", "updated": "2008-01-05T23:59:07.000Z" } ], "analyses": { "keywords": [ "round sphere", "conformal infinity", "complete conformally compact manifold", "scalar curvature", "ricci curvature" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }