{ "id": "0801.0798", "version": "v2", "published": "2008-01-05T10:10:59.000Z", "updated": "2016-09-28T01:08:53.000Z", "title": "On the monochromatic Schur Triples type problem", "authors": [ "Thotsaporn \"Aek\" Thanatipanonda" ], "comment": "10 pages, 3 fugures", "categories": [ "math.CO" ], "abstract": "We discuss a problem posed by Ronald Graham about the minimum number, over all 2-colorings of $[1,n]$, of monochromatic $\\{x,y,x+ay\\}$ triples for $a \\geq 1$. We give a new proof of the original case of $a=1$. We show that the minimum number of such triples is at most $\\frac{n^2}{2a(a^2+2a+3)} + O(n)$ when $a \\geq 2$. We also find a new upper bound for the minimum number, over all $r$-colorings of $[1,n]$, of monochromatic Schur triples, for $r \\geq 3$.", "revisions": [ { "version": "v1", "updated": "2008-01-05T10:10:59.000Z", "title": "A 2-coloring of $[1,n]$ can have $\\frac{n^2}{2a(a^2+2a+3)} + O(n)$ monochromatic triples of the form $\\{x,y,x+ay\\}, a \\geq 2$, but not less!", "abstract": "We solve a problem posed by Ronald Graham about the minimum number, over all 2-colorings of $[1,n]$, of monochromatic $(x,y,x+ay)$ triples, $a \\geq 2$. We show that the minimum number of such triples is $\\frac{n^2}{2a(a^2+2a+3)} + O(n)$. We also find a new upper bound for the minimum number, over all $r$-colorings of $[1,n]$, of monochromatic Schur triples, for $r \\geq 3$.", "journal": null, "doi": null }, { "version": "v2", "updated": "2016-09-28T01:08:53.000Z" } ], "analyses": { "subjects": [ "05D10" ], "keywords": [ "monochromatic triples", "minimum number", "monochromatic schur triples", "ronald graham" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0801.0798A" } } }