{ "id": "0801.0075", "version": "v4", "published": "2007-12-30T20:51:44.000Z", "updated": "2009-02-18T14:14:38.000Z", "title": "Non-existence of absolutely continuous invariant probabilities for exponential maps", "authors": [ "Neil Dobbs", "Bartlomiej Skorulski" ], "comment": "4 pages. Similar to the version published in Fundamenta in February 2008", "journal": "Fundamenta Mathematicae, 198(3):283-287, 2008", "categories": [ "math.DS" ], "abstract": "We show that for entire maps of the form $z \\mapsto \\lambda \\exp(z)$ such that the orbit of zero is bounded and such that Lebesgue almost every point is transitive, no absolutely continuous invariant probability measure can exist. This answers a long-standing open problem.", "revisions": [ { "version": "v4", "updated": "2009-02-18T14:14:38.000Z" } ], "analyses": { "subjects": [ "37F10" ], "keywords": [ "exponential maps", "non-existence", "absolutely continuous invariant probability measure", "entire maps", "long-standing open problem" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0801.0075D" } } }